

Isotherm Testing: Procedures and Application of Results

Gary Amy

Professor of Environmental Engineering
University of Colorado USA

Terminology

- (ad)sorption ⇒ accumulation
 - @ solid/solvent interface
- (ad)sorbent ⇒ solid phase material
- (ad)sorbate ⇒ target compound(s)
 - □ arsenate (or arsenite) ✓
 - □ single vs. multi-sorbate
 - interferants
 - competition
- solvent ⇒ water
- knowledgebase ⇒ activated carbon + organics

Adsorbent Forms and Properties

- Granular vs. Powdered
 - Fixed Bed vs. Slurry Reactor (or Membrane)
- Porous vs. Non-Porous
 - □ e.g., GFH vs. SMI
 - Kinetics
- (Specific) Surface Area (m²/g)
- (Surface) Charge (pH_{ZPC})
- Site Density (#/nm²)
- Mineralogy
 - Crystaline vs. Amorphous
 - Various Iron Oxides, etc. vs. Ion Exchange Resins
 - □ Strictly Adsorbent vs. Reactive media (e.g., MnO₂)

Influential Factors

- Temperature
 - □ Exo- versus Endothermic ⇒ Isotherm
 - □ Exo ⇒ adsorption ∞ 1/temperature;
 Endo ⇒ adsorption ∞ temperature
 - Adsorption
 - Generally exothermic
 - But higher diffusion at higher temperature often offsets higher temperature effects
- pH
 - \square H₂AsO₄ vs. HAsO₄²
- Interferants
 - □ e.g., Phosphate

Mechanisms of Arsenic Adsorption

- Physical Adsorption ×
 - van der Waals Forces
- Chemisorption
 - Surface Complexation
- Exchange Adsorption ✓
 - Ion Exchange

Adsorption Mechanisms

- Chemisorption:
 - ☐ Ligand (L) Exchange

$$>X-OH + L^{-} \leftrightarrow >X-L + OH^{-}$$

Surface Complexation

$$>X-OH + HAsO_4^{2-} \leftrightarrow X-OHAsO_4^{2-} + H^+$$

- Exchange Sorption:
 - $\square > X-CI + L^- \leftrightarrow > X-L + CI^-$
- Influential Factors
 - \square pH: H₂AsO₄⁻, HAsO₄²⁻
 - \square pH_{ZPC} of Adsorbent; if pH < pH_{ZPC}, "+"
 - □ Inner (bond) vs. Outer Sphere Complexes (ion pair)

Mass Transfer Steps

- (External) Film Diffusion
- (Internal) Pore and/or Surface Diffusion
 - Generally Rate-Limiting
- Surface Reaction

Kinetics

Kinetics

Other Studies: up to 96 hours

Bottle Point Isotherms

Bottle Point Experiments

- Concentration Constant ⇒ Vary Adsorbent
 - natural water
- Adsorbent Constant ⇒ Vary Concentration
 - e.g., synthetic water
- Multi-Adsorbate
 - \Box C₀ of arsenic and interferant affects isotherm

(Equilibrium) Isotherms

- $= q = x/m = (V(C_0 C))/m$
 - □ q ⇒ solid phase conc. (e.g., ug/mg)
 - □ C ⇒ equil. water-phase conc. (e.g., ug/L)
 - Initial (C₀) vs. Equilibrium (C)
 - □ m ⇒ adsorbent concentration (e.g., mg/L)
 - □ V ⇒ volume (e.g., L)
 - □ x ⇒ mass adsorbed (e.g., ug)
- Batch Equilibrium Tests
 - □ Equilibration Time:
 - Powdered ⇒ minutes to hours
 - Granular ⇒ hours to days
 - Pulverize granular media?

Activated Alumina Isotherms

Isotherm Equations

Freundlich

- □ Empirical; good data fit of intermediate range data
- \square q = K_FC^{1/n} (or q = KCⁿ in Europe)
- □ q ⇒ solid phase conc. (ug/mg, moles/g, etc.)
- □ C ⇒ equil. water-phase conc. (ug/l, moles/L, etc.)
- □ K_F & 1/n ⇒ empirical constants
 - K_F ⇒ capacity parameter (units!)
 - 1/n ⇒index of "favorable" vs. "unfavorable" adsorption

Langmuir

- Theoretical; good fit of higher and lower range data
- $\square q = (Q_{max}K_LC)/(1 + K_LC)$
- \square $Q_{max} \Rightarrow max. surface conc.$
 - indicative of "monolayer" coverage or site saturation ✓
- □ K_L ⇒ constant

Favorable vs. Unfavorable Adsorption

Determination of Isotherm Constants – cont.

- Linearization of Freundlich Equation
 - \square log q = log K_F + 1/n log C
 - □ log-log plot
 - Intercept ⇒ K_F
 - Slope ⇒ 1/n

Determination of Isotherm Constants – cont.

- Linearization of Langmuir Equation
 - \Box 1/q = 1/Q_{max} + (1/bQ_{max})(1/C)
 - □ Plot of 1/q vs. 1/C
 - Intercept ⇒ 1/Q_{max}
 - Slope ⇒ 1/K_LQ_{max}

Adsorption Capacity

- q vs. C
 - \square q_{eq} vs. C_{eq}
 - \Box q₀ vs. C₀
 - \Box q₁₀ or q₅₀ vs. C = 10 or 50 ug/L
 - mass based q (ug/mg)
 vs. surface area based q (ug/cm²)

A Robust Isotherm

- Lower Level Resolution
 - Adsorbate Limited
- Higher Level Resolution
 - Adsorbent Limited

MA.

Isotherm: Higher and Lower Concentration Ranges

Adsorption of Mixtures

- Multiple Adsorbates
- Reduced Single Adsorbate Capacity

Ŋ4

Competitive Langmuir Equation

$$q_i = (Q_{\text{max},i} K_{L,i} C_i) / (1 + \sum_{j=1}^{17} (K_{L,j} C_j))$$

- □ n ⇒ number of (ad)sorbates
- □ C_i ⇒ equil. conc. of i sorbate in a j sorbate mixture
- □ q_i & K_{L,i} ⇒ single sorbate parameters

For two (Ad)sorbates:

- \square $q_1 = (Q_{max,1}K_{L,1}C_1)/(1 + K_{L,1}C_1 + K_{L,2}C_2)$
- $\square q_2 = (Q_{\text{max},2} K_{\text{L},2} C_2) / (1 + K_{\text{L},1} C_1 + K_{\text{L},2} C_2)$
- \square Q_{max,1}, Q_{max,2}, K_{L,1}, K_{L,2} \Rightarrow derived from single sorbate experiments
- \Box C₁, C₂ \Rightarrow derived from competitive sorbate experiments
- \Box q₁, q₂ \Rightarrow calculated from competitive adsorption

Ŋ.

Information Provided by Isotherms

- Powdered Adsorbent Applications
 - \square If m is specified, C = ?

$$= q = x/m = (V(C_0 - C))/m = = K_FC^{1/n}$$

 \square If C is specified, m = ?

$$= q = x/m = (V(C_0 - C))/m = = K_F C^{1/n}$$

- Granular Adsorbent Applications
 - □ Column-mode capacity \Rightarrow q₀ (vs. C₀)

How does isotherm capacity relate to column capacity?

GAC Column Performance

C(oncentration) to Breakthrough or Exhaustion vs.

```
t(ime) or V(olume), \Sigma V, or \\ B(ed) V(olumes), BVs = \Sigma V/V_{emptv}
```

b/A

Fixed Bed Column: Idealized Breakthrough Curve (BTC)

Adsorption Column with (a) and without (b) MTZ

ÞΑ

Mass Adsorbed at Breakthrough or Exhaustion

Integration of BTC: C (mg/L) vs. V (L)

$$V = V$$

$$\int (C_0 - C)dV$$

$$V \Rightarrow V_B \text{ or } V_E$$

Integration of BTC

Breakthrough Capacity \Rightarrow ① x C₀ Exhaustion Capacity \Rightarrow ① + ② x C₀ Capacity Utilization (%) @ Breakthrough \Rightarrow ①/① + ② x 100 Stoichiometric Breakthrough @ C/C₀ = 0.5

Adsorbent Utilization Rate (AUR)

- AUR (mass/volume)
 - mass of adsorbent in column
- AUR = -----
 - volume treated to breakthrough, V_B
- From BTC:
 - $AUR = \rho_{adsorbent} (g/L)/BVs$ to breakthough
- From Isotherm:

$$AUR (g/L) = (C_0)/q_0$$

 \square g/L = mg/L \div mg/g

Adsorbent Bedlife (BVs)

- From BTC:
 - □ BVs @ breakthrough
- From Isotherm:

Bed-Life = $q_0/C_0 \times \rho_{adsorbent}$

- □ Bed-Life ⇒ BVs
- $\Box q_0 \Rightarrow mg/g$
- \Box C₀ \Rightarrow mg/L
- $\square \rho_{adsorbent} \Rightarrow apparent density of adsorbent (g/L)$
- \Box dimensionless = mg/g \div (mg/L) x g/L

Summary

- Isotherms provide an equilibrium estimate of capacity
- Isotherms provide an tool for rapid screening of candidate adsorbents and interferants
- Isotherms provide insight into column capacity

gamy@spot.colorado.edu

